Prediciendo los resultados de la copa América con Machine Learning y Python.
Python
Sistema Binario, números binarios, convertir Binario a Decimal, convertir Decimal a Binario, suma de Binarios, Resta de Binarios, multiplicación de Binarios, División de Binarios, números binarios con Python.
Procesamiento del Lenguaje Natural con Python. Introducción. ¿Qué es el Procesamiento del Lenguaje Natural?. Aplicaciones del Procesamiento del Lenguaje Natural. Librerías de Python. Corpus lingüístico. Token. Entidades. POS. Ejemplos en Python. Deep Learning y Procesamiento del Lenguaje Natural. Gensim. Spacy. Textacy. Procesamiento del lenguaje natural en español.
Introducción al Bosting en Machine Learning. ¿Qué es Boosting?. AdaBoost. Gradient Boosting. Elementos del Gradient Boosting. Función de pérdida. Clasificador débil. Modelo aditivo. Ejemplos en Python. XGBoost. LightGBM.
Introducción a la inferencia Bayesiana con Python. La incertidumbre y el problema de la inducción, El teorema de Bayes, inferencia bayesiana, redes Bayesianas, Programación probabilística y PyMC3, Bayes ingenuo.
Simulación de Monte-Carlo con Python. Números aleatorios, cadenas de Markov, algoritmo Metropolis-Hastings, métodos MCMC.
Series de tiempo con python. Qué es una serie de tiempo, series de tiempo estacionarias, aplicaciones, ejemplos en python.
Visualización de datos con python. Análisis de datos, cómo elegir la visualización adecuada, librerías de python, bokeh, folium, seaborn, matplotlib.
Factorización de matrices con python. Qué es una factorización de matrices, importancia en Machine learning, factorización de matrices en sistemas de ecuaciones lineales, matrices dispersas y no negativas, descomposición de valores singulares(SVD), análisis de componentes principales(PCA), sistemas de recomendación, ejemplos en python.
Redes neuronales convolucionales con python. Qué son las redes neuronales convolucionales, su estructura, aplicaciones en imágenes, ejemplo con TensorFlow.